1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 | 3× | // SPDX-License-Identifier: GPL-3.0 /* Copyright 2021 0KIMS association. This file is generated with [snarkJS](https://github.com/iden3/snarkjs). snarkJS is a free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. snarkJS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with snarkJS. If not, see <https://www.gnu.org/licenses/>. */ pragma solidity >=0.7.0 <0.9.0; contract Groth16Verifier { // Scalar field size uint256 constant r = 21888242871839275222246405745257275088548364400416034343698204186575808495617; // Base field size uint256 constant q = 21888242871839275222246405745257275088696311157297823662689037894645226208583; // Verification Key data uint256 constant alphax = 13107290380154181775932389224182069578958704359609208285388840391968280295342; uint256 constant alphay = 9484483495940647349518892948807864800711049141935764397474173560076127534058; uint256 constant betax1 = 17123502368440839454625522146137454055150539394075688578872143959930050386987; uint256 constant betax2 = 18683692064844742623262377297864378715127115541674987712091450834209838587952; uint256 constant betay1 = 8203736733343170051142780987840908556319288444398332760019178388216785733972; uint256 constant betay2 = 15952264932889423452920300095322868224910774455523175368601827269719664711223; uint256 constant gammax1 = 11559732032986387107991004021392285783925812861821192530917403151452391805634; uint256 constant gammax2 = 10857046999023057135944570762232829481370756359578518086990519993285655852781; uint256 constant gammay1 = 4082367875863433681332203403145435568316851327593401208105741076214120093531; uint256 constant gammay2 = 8495653923123431417604973247489272438418190587263600148770280649306958101930; uint256 constant deltax1 = 5167487581831034256820456571508248506092052194863166756380949583195475414709; uint256 constant deltax2 = 2699678693452768588060345545776436745981057571381284345494159235915521467840; uint256 constant deltay1 = 4509936585434281573968870884284761348119413084916050841570544537303872716142; uint256 constant deltay2 = 11813057670459563023394783075264216202411868301165553729311205547642315153916; uint256 constant IC0x = 14148887804327275129786572318768332468680753287519511645794326635805971339579; uint256 constant IC0y = 15511514365727074811496047865635345240711024085094665661132886447198668288089; uint256 constant IC1x = 13649019881328025093027973410430708472013825939627030975143659310153460467030; uint256 constant IC1y = 10596969315078644054214265022059688949122567509024213600113608854014041289281; uint256 constant IC2x = 14672977594699472708790204060233245870494507038879427730541374673782184558479; uint256 constant IC2y = 11380443747385973849203136333087437771378629730517916388332119049051900916185; // Memory data uint16 constant pVk = 0; uint16 constant pPairing = 128; uint16 constant pLastMem = 896; function verifyProof(uint[2] calldata _pA, uint[2][2] calldata _pB, uint[2] calldata _pC, uint[2] calldata _pubSignals) public view returns (bool) { assembly { function checkField(v) { if iszero(lt(v, q)) { mstore(0, 0) return(0, 0x20) } } // G1 function to multiply a G1 value(x,y) to value in an address function g1_mulAccC(pR, x, y, s) { let success let mIn := mload(0x40) mstore(mIn, x) mstore(add(mIn, 32), y) mstore(add(mIn, 64), s) success := staticcall(sub(gas(), 2000), 7, mIn, 96, mIn, 64) if iszero(success) { mstore(0, 0) return(0, 0x20) } mstore(add(mIn, 64), mload(pR)) mstore(add(mIn, 96), mload(add(pR, 32))) success := staticcall(sub(gas(), 2000), 6, mIn, 128, pR, 64) if iszero(success) { mstore(0, 0) return(0, 0x20) } } function checkPairing(pA, pB, pC, pubSignals, pMem) -> isOk { let _pPairing := add(pMem, pPairing) let _pVk := add(pMem, pVk) mstore(_pVk, IC0x) mstore(add(_pVk, 32), IC0y) // Compute the linear combination vk_x g1_mulAccC(_pVk, IC1x, IC1y, calldataload(add(pubSignals, 0))) g1_mulAccC(_pVk, IC2x, IC2y, calldataload(add(pubSignals, 32))) // -A mstore(_pPairing, calldataload(pA)) mstore(add(_pPairing, 32), mod(sub(q, calldataload(add(pA, 32))), q)) // B mstore(add(_pPairing, 64), calldataload(pB)) mstore(add(_pPairing, 96), calldataload(add(pB, 32))) mstore(add(_pPairing, 128), calldataload(add(pB, 64))) mstore(add(_pPairing, 160), calldataload(add(pB, 96))) // alpha1 mstore(add(_pPairing, 192), alphax) mstore(add(_pPairing, 224), alphay) // beta2 mstore(add(_pPairing, 256), betax1) mstore(add(_pPairing, 288), betax2) mstore(add(_pPairing, 320), betay1) mstore(add(_pPairing, 352), betay2) // vk_x mstore(add(_pPairing, 384), mload(add(pMem, pVk))) mstore(add(_pPairing, 416), mload(add(pMem, add(pVk, 32)))) // gamma2 mstore(add(_pPairing, 448), gammax1) mstore(add(_pPairing, 480), gammax2) mstore(add(_pPairing, 512), gammay1) mstore(add(_pPairing, 544), gammay2) // C mstore(add(_pPairing, 576), calldataload(pC)) mstore(add(_pPairing, 608), calldataload(add(pC, 32))) // delta2 mstore(add(_pPairing, 640), deltax1) mstore(add(_pPairing, 672), deltax2) mstore(add(_pPairing, 704), deltay1) mstore(add(_pPairing, 736), deltay2) let success := staticcall(sub(gas(), 2000), 8, _pPairing, 768, _pPairing, 0x20) isOk := and(success, mload(_pPairing)) } let pMem := mload(0x40) mstore(0x40, add(pMem, pLastMem)) // Validate that all evaluations ∈ F checkField(calldataload(add(_pubSignals, 0))) checkField(calldataload(add(_pubSignals, 32))) checkField(calldataload(add(_pubSignals, 64))) // Validate all evaluations let isValid := checkPairing(_pA, _pB, _pC, _pubSignals, pMem) mstore(0, isValid) return(0, 0x20) } } } |